dc.contributorUniversidade de São Paulo (USP)
dc.contributorFederal University of Juiz de Fora
dc.contributorUniversity of Pittsburgh
dc.contributorUniversidade Federal de Minas Gerais (UFMG)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:28:11Z
dc.date.available2014-05-27T11:28:11Z
dc.date.created2014-05-27T11:28:11Z
dc.date.issued2013-01-17
dc.identifierBiotechnology for Biofuels, v. 6, n. 1, 2013.
dc.identifier1754-6834
dc.identifierhttp://hdl.handle.net/11449/74393
dc.identifier10.1186/1754-6834-6-4
dc.identifierWOS:000316176700001
dc.identifier2-s2.0-84872194401
dc.identifier2-s2.0-84872194401.pdf
dc.description.abstractBackground: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
dc.languageeng
dc.relationBiotechnology for Biofuels
dc.relation5.497
dc.relation1,899
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectAlternative sources of energy
dc.subjectCommercial productions
dc.subjectEnzymatic hydrolysates
dc.subjectEthanol production
dc.subjectFermentable sugars
dc.subjectHemicellulose degradation
dc.subjectStructural differences
dc.subjectThermochemical pretreatment
dc.subjectAtomic force microscopy
dc.subjectBagasse
dc.subjectCellulose
dc.subjectCellulosic ethanol
dc.subjectEnzymatic hydrolysis
dc.subjectFourier transform infrared spectroscopy
dc.subjectNear infrared spectroscopy
dc.subjectOil spills
dc.subjectOils and fats
dc.subjectOrganic acids
dc.subjectOxalic acid
dc.subjectRaman spectroscopy
dc.subjectScanning electron microscopy
dc.subjectSubstrates
dc.subjectSugars
dc.subjectX ray diffraction
dc.subjectYeast
dc.subjectalternative energy
dc.subjectenzyme activity
dc.subjectethanol
dc.subjectfermentation
dc.subjecthydrolysis
dc.subjectoxalic acid
dc.subjectOrganic Acids
dc.subjectOxalic Acid
dc.subjectRaman Spectroscopy
dc.subjectScanning Electron Microscopy
dc.subjectX Ray Diffraction
dc.subjectYeasts
dc.subjectCandida shehatae
dc.subjectSaccharomyces cerevisiae
dc.titleUltra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución