dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversitat Jaume i
dc.contributorUniversity of Oxford
dc.date.accessioned2014-05-27T11:27:33Z
dc.date.available2014-05-27T11:27:33Z
dc.date.created2014-05-27T11:27:33Z
dc.date.issued2013-01-02
dc.identifierAnalytical Chemistry, v. 85, n. 1, p. 411-417, 2013.
dc.identifier0003-2700
dc.identifier1520-6882
dc.identifierhttp://hdl.handle.net/11449/74342
dc.identifier10.1021/ac303018d
dc.identifierWOS:000313156500061
dc.identifier2-s2.0-84871816157
dc.identifier0477045906733254
dc.identifier0000-0003-2827-0208
dc.description.abstractElectrochemical analyses on confined electroactive molecular layers, herein exemplified with electroactive self-assembled monolayers, sample current contributions that are significantly influenced by additional nonfaradaic and uncompensated resistance effects that, though unresolved, can strongly distort redox analysis. Prior work has shown that impedance-derived capacitance spectroscopy approaches can cleanly resolve all contributions generated at such films, including those which are related to the layer dipolar/electrostatic relaxation characteristics. We show herein that, in isolating the faradaic and nonfaradaic contributions present within an improved equivalent circuit description of such interfaces, it is possible to accurately simulate subsequently observed cyclic voltammograms (that is, generated current versus potential patterns map accurately onto frequency domain measurements). Not only does this enable a frequency-resolved quantification of all components present, and in so doing, a full validation of the equivalent circuit model utilized, but also facilitates the generation of background subtracted cyclic voltammograms remarkably free from all but faradaic contributions. © 2012 American Chemical Society.
dc.languageeng
dc.relationAnalytical Chemistry
dc.relation6.042
dc.relation2,362
dc.relation2,362
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCapacitance spectroscopy
dc.subjectCircuit description
dc.subjectCyclic voltammograms
dc.subjectElectroactive
dc.subjectElectrochemical analysis
dc.subjectEquivalent circuit model
dc.subjectFrequency domain measurement
dc.subjectMolecular layer
dc.subjectSelf assembled monolayers
dc.subjectCapacitance
dc.titleElucidating capacitance and resistance terms in confined electroactive molecular layers
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución