dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:27:32Z
dc.date.available2014-05-27T11:27:32Z
dc.date.created2014-05-27T11:27:32Z
dc.date.issued2013-01-01
dc.identifierDiscrete and Continuous Dynamical Systems- Series A, v. 33, n. 2, p. 803-817, 2013.
dc.identifier1078-0947
dc.identifier1553-5231
dc.identifierhttp://hdl.handle.net/11449/74292
dc.identifier10.3934/dcds.2013.33.803
dc.identifierWOS:000309289900018
dc.identifier2-s2.0-84867865189
dc.description.abstractIn this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.
dc.languageeng
dc.relationDiscrete and Continuous Dynamical Systems- Series A
dc.relation0.976
dc.relation1,592
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectCorrectors
dc.subjectError estimate.
dc.subjectHomogenization
dc.subjectThin domains
dc.titleError estimates for a neumann problem in highly oscillating thin domains
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución