dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:26:14Z
dc.date.available2014-05-27T11:26:14Z
dc.date.created2014-05-27T11:26:14Z
dc.date.issued2011-12-01
dc.identifierProceedings - International Conference on Image Processing, ICIP, p. 3525-3528.
dc.identifier1522-4880
dc.identifierhttp://hdl.handle.net/11449/72853
dc.identifier10.1109/ICIP.2011.6116475
dc.identifierWOS:000298962503165
dc.identifier2-s2.0-84856297857
dc.identifier9039182932747194
dc.description.abstractDifferent from the first attempts to solve the image categorization problem (often based on global features), recently, several researchers have been tackling this research branch through a new vantage point - using features around locally invariant interest points and visual dictionaries. Although several advances have been done in the visual dictionaries literature in the past few years, a problem we still need to cope with is calculation of the number of representative words in the dictionary. Therefore, in this paper we introduce a new solution for automatically finding the number of visual words in an N-Way image categorization problem by means of supervised pattern classification based on optimum-path forest. © 2011 IEEE.
dc.languageeng
dc.relationProceedings - International Conference on Image Processing, ICIP
dc.relation0,257
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectImage Categorization
dc.subjectLocal Interest Points
dc.subjectOptimum Path Forest
dc.subjectVisual Dictionaries
dc.subjectGlobal feature
dc.subjectInterest points
dc.subjectVisual word
dc.subjectForestry
dc.subjectImage processing
dc.subjectImaging systems
dc.subjectImage Analysis
dc.subjectProblem Solving
dc.titleImage categorization through optimum path forest and visual words
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución