dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2014-05-27T11:26:11Z
dc.date.available2014-05-27T11:26:11Z
dc.date.created2014-05-27T11:26:11Z
dc.date.issued2011-11-28
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7042 LNCS, p. 581-590.
dc.identifier0302-9743
dc.identifier1611-3349
dc.identifierhttp://hdl.handle.net/11449/72816
dc.identifier10.1007/978-3-642-25085-9_69
dc.identifier2-s2.0-81855226076
dc.identifier9039182932747194
dc.description.abstractThe research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
dc.languageeng
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation0,295
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectClassifier decisions
dc.subjectDecision graphs
dc.subjectDecision template
dc.subjectEnsemble of classifiers
dc.subjectFinal decision
dc.subjectForest classifiers
dc.subjectGame strategies
dc.subjectMarkov Random Field model
dc.subjectMultiple classifier systems
dc.subjectMultiple classifiers systems
dc.subjectRandom field model
dc.subjectReal data sets
dc.subjectComputer simulation
dc.subjectComputer vision
dc.subjectForestry
dc.subjectImage segmentation
dc.subjectPattern recognition systems
dc.subjectClassifiers
dc.subjectComputers
dc.subjectImage Analysis
dc.subjectOCR
dc.subjectPatterns
dc.subjectRandom Processes
dc.subjectSegmentation
dc.subjectSimulation
dc.subjectVision
dc.titleA Markov random field model for combining optimum-path forest classifiers using decision graphs and game strategy approach
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución