dc.contributorUniversidad Carlos III de Madrid
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:26:06Z
dc.date.available2014-05-27T11:26:06Z
dc.date.created2014-05-27T11:26:06Z
dc.date.issued2011-11-01
dc.identifierProceedings of the American Mathematical Society, v. 139, n. 11, p. 3929-3936, 2011.
dc.identifier0002-9939
dc.identifierhttp://hdl.handle.net/11449/72771
dc.identifier10.1090/S0002-9939-2011-10806-2
dc.identifier2-s2.0-79960792219
dc.identifier2-s2.0-79960792219.pdf
dc.description.abstractIn this paper we analyze the location of the zeros of polynomials orthogonal with respect to the inner product where α >-1, N ≥ 0, and j ∈ N. In particular, we focus our attention on their interlacing properties with respect to the zeros of Laguerre polynomials as well as on the monotonicity of each individual zero in terms of the mass N. Finally, we give necessary and sufficient conditions in terms of N in order for the least zero of any Laguerre-Sobolev-type orthogonal polynomial to be negative. © 2011 American Mathematical Society.
dc.languageeng
dc.relationProceedings of the American Mathematical Society
dc.relation0.707
dc.relation1,183
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectAsymptotics
dc.subjectInterlacing
dc.subjectLaguerre orthogonal polynomials
dc.subjectLaguerre-Sobolev-type orthogonal polynomials
dc.subjectMonotonicity
dc.subjectZeros
dc.titleMonotonicity and asymptotics of zeros of Laguerre-Sobolev-type orthogonal polynomials of higher order derivatives
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución