dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:25:51Z
dc.date.available2014-05-27T11:25:51Z
dc.date.created2014-05-27T11:25:51Z
dc.date.issued2011-05-01
dc.identifierPhysica A: Statistical Mechanics and its Applications, v. 390, n. 9, p. 1591-1601, 2011.
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11449/72401
dc.identifier10.1016/j.physa.2010.12.032
dc.identifier2-s2.0-79952107797
dc.identifier2-s2.0-79952107797.pdf
dc.description.abstractWe consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.
dc.languageeng
dc.relationPhysica A: Statistical Mechanics and Its Applications
dc.relation2.132
dc.relation0,773
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectBrownian motion
dc.subjectBrownian motors
dc.subjectCarrier transport
dc.subjectDissipative dynamics
dc.subjectEvolution of nonequilibrium systems
dc.subjectKramers equation
dc.subjectSmoluchowski equation
dc.subjectKramers equations
dc.subjectDistribution functions
dc.subjectEntropy
dc.subjectVariational techniques
dc.subjectBrownian movement
dc.titleCharged Brownian particles: Kramers and Smoluchowski equations and the hydrothermodynamical picture
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución