dc.contributorInstituto de Estudos Avançados - IEAv
dc.contributorInstituto Tecnológico de Aeronáutica - ITA
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:25:20Z
dc.date.available2014-05-27T11:25:20Z
dc.date.created2014-05-27T11:25:20Z
dc.date.issued2010-12-01
dc.identifierProceedings of SPIE - The International Society for Optical Engineering, v. 7839.
dc.identifier0277-786X
dc.identifierhttp://hdl.handle.net/11449/72061
dc.identifier10.1117/12.868246
dc.identifier2-s2.0-79953123514
dc.description.abstractWe address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.
dc.languageeng
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectFiber optics
dc.subjectLiquid crystal
dc.subjectMicrostructured optical fibers
dc.subjectPhotonic bandgap
dc.subjectPhotonic crystal fibers
dc.subjectAir holes
dc.subjectBand gap effects
dc.subjectBand gaps
dc.subjectComputational program
dc.subjectHexagonal lattice
dc.subjectHigh Index materials
dc.subjectHigh-index
dc.subjectHybrid photonic crystals
dc.subjectIndex material
dc.subjectLow loss
dc.subjectLow-refractive-index materials
dc.subjectMicro-structured optical fibers
dc.subjectNematic liquids
dc.subjectOptical modes
dc.subjectOptical propagation
dc.subjectPhysical effects
dc.subjectTemperature changes
dc.subjectThermally induced
dc.subjectThermo-optic coefficients
dc.subjectThermo-optical
dc.subjectTotal internal reflections
dc.subjectTransmission spectrums
dc.subjectTunabilities
dc.subjectUniaxial media
dc.subjectAnisotropic media
dc.subjectCrystal whiskers
dc.subjectEnergy gap
dc.subjectFibers
dc.subjectLiquid crystals
dc.subjectLiquids
dc.subjectMetal cladding
dc.subjectMicrostructure
dc.subjectNematic liquid crystals
dc.subjectOptical fibers
dc.subjectOptical waveguides
dc.subjectPhotonic bandgap fibers
dc.subjectRefractive index
dc.subjectSpontaneous emission
dc.subjectPhotonic crystals
dc.titleThermal tunability of photonic bandgaps in photonic crystal fibers selectively filled with nematic liquid crystal
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución