dc.contributorBrunel University
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:24:50Z
dc.date.available2014-05-27T11:24:50Z
dc.date.created2014-05-27T11:24:50Z
dc.date.issued2010-11-22
dc.identifierAnnales de l'Institut Fourier, v. 60, n. 4, p. 1363-1400, 2010.
dc.identifier0373-0956
dc.identifierhttp://hdl.handle.net/11449/71965
dc.identifier10.5802/aif.2558
dc.identifier2-s2.0-78349232386
dc.description.abstractWe implement a singularity theory approach, the path formulation, to classify D3-equivariant bifurcation problems of corank 2, with one or two distinguished parameters, and their perturbations. The bifurcation diagrams are identified with sections over paths in the parameter space of a Ba-miniversal unfolding f0 of their cores. Equivalence between paths is given by diffeomorphisms liftable over the projection from the zero-set of F0 onto its unfolding parameter space. We apply our results to degenerate bifurcation of period-3 subharmonics in reversible systems, in particular in the 1:1-resonance.
dc.languageeng
dc.relationAnnales de l'Institut Fourier
dc.relation0.638
dc.relation1,703
dc.rightsAcesso aberto
dc.sourceScopus
dc.subject1:1-resonance
dc.subjectDegenerate bifurcation
dc.subjectEquivariant bifurcation
dc.subjectPath formulation
dc.subjectReversible systems
dc.subjectSingularity theory
dc.subjectSubharmonic bifurcation
dc.titlePath formulation for multiparameter D3-equivariant bifurcation problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución