Actas de congresos
Optimizing optimum-path forest classification for huge datasets
Date
2010-11-18Registration in:
Proceedings - International Conference on Pattern Recognition, p. 4162-4165.
1051-4651
10.1109/ICPR.2010.1012
2-s2.0-78149477256
9039182932747194
Author
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
Institutions
Abstract
Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.
Subjects
Related items
Showing items related by title, author, creator and subject.
-
Compendio de innovaciones socioambientales en la frontera sur de México
Adriana Quiroga -
Caminar el cafetal: perspectivas socioambientales del café y su gente
Eduardo Bello Baltazar; Lorena Soto_Pinto; Graciela Huerta_Palacios; Jaime Gomez -
Material de empaque para biofiltración con base en poliuretano modificado con almidón, metodos para la manufactura del mismo y sistema de biofiltración
OLGA BRIGIDA GUTIERREZ ACOSTA; VLADIMIR ALONSO ESCOBAR BARRIOS; SONIA LORENA ARRIAGA GARCIA