dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorTechnological Research Center
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorFaculty of Engineering
dc.date.accessioned2014-05-27T11:24:41Z
dc.date.available2014-05-27T11:24:41Z
dc.date.created2014-05-27T11:24:41Z
dc.date.issued2010-05-21
dc.identifierLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6026 LNCS, p. 210-220.
dc.identifier0302-9743
dc.identifier1611-3349
dc.identifierhttp://hdl.handle.net/11449/71689
dc.identifier10.1007/978-3-642-12712-0_19
dc.identifierWOS:000279020400019
dc.identifier2-s2.0-77952364349
dc.identifier9039182932747194
dc.description.abstractIn this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.
dc.languageeng
dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation0,295
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectCast irons
dc.subjectImage segmentation
dc.subjectMaterials science
dc.subjectMicrostructural evaluation
dc.subjectSupervised classification
dc.subjectFerrous alloys
dc.subjectForest classifiers
dc.subjectKernel mapping
dc.subjectMalleable cast iron
dc.subjectMicro-structural
dc.subjectMicroscopic image
dc.subjectRadial basis functions
dc.subjectSegmented images
dc.subjectDamping
dc.subjectDigital image storage
dc.subjectIron
dc.subjectMalleable iron castings
dc.subjectRadial basis function networks
dc.subjectSupport vector machines
dc.subjectCast iron
dc.titleFast automatic microstructural segmentation of ferrous alloy samples using optimum-path forest
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución