dc.contributorUniversitat Autònoma de Barcelona
dc.contributorUFG
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:23:45Z
dc.date.available2014-05-27T11:23:45Z
dc.date.created2014-05-27T11:23:45Z
dc.date.issued2008-12-01
dc.identifierBoletim da Sociedade Paranaense de Matematica, v. 26, n. 1-2, p. 41-52, 2008.
dc.identifier0037-8712
dc.identifier2175-1188
dc.identifierhttp://hdl.handle.net/11449/70752
dc.identifier10.5269/bspm.v26i1-2.7401
dc.identifier2-s2.0-84881363091
dc.identifier2-s2.0-84881363091.pdf
dc.description.abstractIn this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
dc.languageeng
dc.relationBoletim da Sociedade Paranaense de Matematica
dc.relation0,210
dc.relation0,210
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectInverse integrating facto
dc.subjectLimit cycles
dc.subjectSingular perturbation
dc.subjectVector fields
dc.titleLimit cycles for singular perturbation problems via inverse integrating factor
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución