Artículos de revistas
Synergy of DNA-bending nucleoid proteins and macromolecular crowding in condensing DNA
Fecha
2007-10-01Registro en:
Biophysical Reviews and Letters, v. 2, n. 3-4, p. 259-265, 2007.
1793-0480
10.1142/S1793048007000556
2-s2.0-42049108611
Autor
Universidade Estadual Paulista (Unesp)
Wageningen University
Institución
Resumen
Many prokaryotic nucleoid proteins bend DNA and form extended helical protein-DNA fibers rather than condensed structures. On the other hand, it is known that such proteins (such as bacterial HU) strongly promote DNA condensation by macromolecular crowding. Using theoretical arguments, we show that this synergy is a simple consequence of the larger diameter and lower net charge density of the protein-DNA filaments as compared to naked DNA, and hence, should be quite general. To illustrate this generality, we use light-scattering to show that the 7kDa basic archaeal nucleoid protein Sso7d from Sulfolobus solfataricus (known to sharply bend DNA) likewise does not significantly condense DNA by itself. However, the resulting protein-DNA fibers are again highly susceptible to crowding-induced condensation. Clearly, if DNA-bending nucleoid proteins fail to condense DNA in dilute solution, this does not mean that they do not contribute to DNA condensation in the context of the crowded living cell. © 2007 World Scientific Publishing Company.
Materias
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Efeito do consumo das proteínas, peptídeos e aminoácidos do soro do leite nas heat shock proteins (HSPs) e parâmetros relacionados em ratos = Effect of the intake of whey proteins, their peptides and amino acids on the heat shock proteins (HSPs) and health related parameters in rats
Moura, Carolina Soares de, 1988- -
ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence
Qiu, J.; Bernhofer, M.; Heinzinger, M.; Kemper, S.; Norambuena Arenas, Tomás; Melo Ledermann, Francisco Javier; Rost, B. (2020)