dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:22:03Z
dc.date.available2014-05-27T11:22:03Z
dc.date.created2014-05-27T11:22:03Z
dc.date.issued2006-12-01
dc.identifierIEEE Latin America Transactions, v. 4, n. 4, p. 249-256, 2006.
dc.identifier1548-0992
dc.identifierhttp://hdl.handle.net/11449/69266
dc.identifier10.1109/TLA.2006.4472121
dc.identifier2-s2.0-77958181102
dc.identifier2-s2.0-77958181102.pdf
dc.identifier3356686459975471
dc.description.abstractThere are several papers on pruning methods in the artificial neural networks area. However, with rare exceptions, none of them presents an appropriate statistical evaluation of such methods. In this article, we proved statistically the ability of some methods to reduce the number of neurons of the hidden layer of a multilayer perceptron neural network (MLP), and to maintain the same landing of classification error of the initial net. They are evaluated seven pruning methods. The experimental investigation was accomplished on five groups of generated data and in two groups of real data. Three variables were accompanied in the study: apparent classification error rate in the test group (REA); number of hidden neurons, obtained after the application of the pruning method; and number of training/retraining epochs, to evaluate the computational effort. The non-parametric Friedman's test was used to do the statistical analysis.
dc.languagepor
dc.relationIEEE Latin America Transactions
dc.relation0.502
dc.relation0,253
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial Neural Network
dc.subjectClassification error rate
dc.subjectClassification errors
dc.subjectComputational effort
dc.subjectExperimental investigations
dc.subjectHidden layers
dc.subjectHidden neurons
dc.subjectIntermedia
dc.subjectMLP neural networks
dc.subjectMultilayer perceptron neural networks
dc.subjectNon-parametric
dc.subjectPruning methods
dc.subjectStatistical analysis
dc.subjectStatistical evaluation
dc.subjectFunction evaluation
dc.subjectNeural networks
dc.titleAvaliação estatística de métodos de poda aplicados em neurônios intermediários da rede neural MLP
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución