dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:21:05Z
dc.date.available2014-05-27T11:21:05Z
dc.date.created2014-05-27T11:21:05Z
dc.date.issued2004-06-01
dc.identifierArchives of Inequalities and Applications, v. 2, n. 2-3, p. 339-353, 2004.
dc.identifier1542-6149
dc.identifierhttp://hdl.handle.net/11449/67760
dc.identifier2-s2.0-11044237331
dc.description.abstractLet 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities ∥f′∥ 2 ≤ A∥f″∥2 + B∥f∥ 2 hold. © Dynamic Publishers, Inc.
dc.languageeng
dc.relationArchives of Inequalities and Applications
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectBessel polynomials
dc.subjectExtremal polynomials
dc.subjectJacobi polynomials
dc.subjectLaguerre polynomials
dc.subjectLandau and Kolmogoroff type inequalities
dc.subjectMarkov's inequality
dc.subjectRayleigh-Ritz theorem
dc.titleLandau and Kolmogoroff type polynomial inequalities II
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución