dc.contributorInstitute for Plasma Research
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorJ W Goethe Universität
dc.date.accessioned2014-05-27T11:20:17Z
dc.date.available2014-05-27T11:20:17Z
dc.date.created2014-05-27T11:20:17Z
dc.date.issued2001-07-01
dc.identifierJournal of Physics G: Nuclear and Particle Physics, v. 27, n. 7, p. 1561-1575, 2001.
dc.identifier0954-3899
dc.identifierhttp://hdl.handle.net/11449/66538
dc.identifier10.1088/0954-3899/27/7/314
dc.identifierWOS:000170187400018
dc.identifier2-s2.0-0035608698
dc.description.abstractWe derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
dc.languageeng
dc.relationJournal of Physics G: Nuclear and Particle Physics
dc.relation3.456
dc.relation1,513
dc.rightsAcesso restrito
dc.sourceScopus
dc.titleQuantum vacuum in hot nuclear matter: A non-perturbative treatment
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución