dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:20:14Z
dc.date.available2014-05-27T11:20:14Z
dc.date.created2014-05-27T11:20:14Z
dc.date.issued2001-01-01
dc.identifierControle y Automacao, v. 12, n. 1, p. 1-11, 2001.
dc.identifier0103-1759
dc.identifierhttp://hdl.handle.net/11449/66448
dc.identifier2-s2.0-0034945180
dc.identifier2-s2.0-0034945180.pdf
dc.identifier5589838844298232
dc.identifier0000-0001-8510-8245
dc.description.abstractSystems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.
dc.languagepor
dc.relationControle y Automacao
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial neural networks
dc.subjectDynamic programming
dc.subjectHopfield networks
dc.subjectSystem optimization
dc.subjectComputer simulation
dc.subjectOptimal systems
dc.subjectProblem solving
dc.subjectProgram processors
dc.subjectRecurrent neural networks
dc.titleProjeto E análise de uma rede neural para resolver problemas de programação dinâmica
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución