dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:20:13Z
dc.date.available2014-05-27T11:20:13Z
dc.date.created2014-05-27T11:20:13Z
dc.date.issued2001-01-01
dc.identifierProceedings of the International Joint Conference on Neural Networks, v. 3, p. 1744-1749.
dc.identifierhttp://hdl.handle.net/11449/66422
dc.identifier10.1109/IJCNN.2001.938425
dc.identifierWOS:000172784800310
dc.identifier2-s2.0-0034862952
dc.identifier4517057121462258
dc.identifier8212775960494686
dc.description.abstractThe ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel barrier method using artificial neural networks to solve robust parameter estimation problems for nonlinear model with unknown-but-bounded errors and uncertainties. This problem can be represented by a typical constrained optimization problem. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.
dc.languageeng
dc.relationProceedings of the International Joint Conference on Neural Networks
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectComputer simulation
dc.subjectErrors
dc.subjectMathematical models
dc.subjectOptimization
dc.subjectParameter estimation
dc.subjectBarrier method
dc.subjectConstrained nonlinear optimization
dc.subjectEquilibrium point
dc.subjectModified Hopfield network
dc.subjectNonlinear model
dc.subjectUnknown but bounded errors
dc.subjectValid subspace technique
dc.subjectNeural networks
dc.titleA barrier method for constrained nonlinear optimization using a modified Hopfield network
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución