dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de Pernambuco (UFPE)
dc.contributorInstituto Nacional de Pesquisas Espaciais (INPE)
dc.date.accessioned2014-05-27T11:18:18Z
dc.date.available2014-05-27T11:18:18Z
dc.date.created2014-05-27T11:18:18Z
dc.date.issued1997-12-01
dc.identifierProceedings of SPIE - The International Society for Optical Engineering, v. 3077, p. 690-697.
dc.identifier0277-786X
dc.identifierhttp://hdl.handle.net/11449/65283
dc.identifier10.1117/12.271531
dc.identifierWOS:A1997BH60Z00072
dc.identifier2-s2.0-0031382977
dc.identifier1233049484488761
dc.description.abstractThe main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.
dc.languageeng
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsAcesso aberto
dc.sourceScopus
dc.subjectComputational complexity
dc.subjectFunction evaluation
dc.subjectLeast squares approximations
dc.subjectMapping
dc.subjectPerformance
dc.subjectPolynomials
dc.subjectSignal processing
dc.subjectSpeech
dc.subjectWavelet transforms
dc.subjectActivation function
dc.subjectPolynomial Powers of Sigmoid
dc.subjectNeural networks
dc.titleActivation function study for wavelet network
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución