Artículos de revistas
Gold-bearing iron duricrust in Central Brazil
Fecha
1991-11-01Registro en:
Journal of Geochemical Exploration, v. 41, n. 3, p. 309-323, 1991.
0375-6742
10.1016/0375-6742(91)90005-F
2-s2.0-0026359454
Autor
Universidade de São Paulo (USP)
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
Institución
Resumen
In the Cuiabá region-State of Mato Grosso, Central Brazil-primary gold mineralization is hosted by two generations of quartz veins in Precambrian metamorphic terrains of the Cuiabá Group. Gold is mined from the veins and mainly from the eluvial horizons that cover the deeply altered basement. In the lodes gold occurs as small particles (less than 1 mm) associated with pyrite and contains up to 5% Ag. Larger particles and nuggets of almost pure gold are found in the iron duricrust which caps the upper levels of the weathering profile. It is difficult to determine the average grade of this kind of deposit but some prospects in the Cuiabá region produce up to 2 g gold per ton of ore. Lateritization is responsible for both the formation of the iron crust and the concentration of gold within the regolith. Under a tropical climate, the supergene alteration of phyllites of the Cuiabá Group has led to the formation of a weathering profile consisting typically of saprolite, mottled clay zone and duricrust, from bottom to top. The duricrust is directly derived form the in situ weathering of phyllites. Geochemical balance calculations indicate that in the transition from the saprolite to the duricrust lateritization has promoted a progressive loss of Si, Al and K, and more than 500% of absolute Fe enrichment. Gold underwent a supergene evolution related to the development of the weathering profile. In the saprolite and mottled clay zone, associated with quartz and oxidized sulfides, gold dissolves as demonstrated by corrosion features at the surface of the particles. The formation of secondary gold in the duricrust is indicated by the larger size of the nuggets, their higher fineness and the close relationship between gold and the neoformed iron oxy-hydroxides. © 1991.