dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Mato Grosso do Sul (UEMS)
dc.date.accessioned2014-05-20T15:31:55Z
dc.date.available2014-05-20T15:31:55Z
dc.date.created2014-05-20T15:31:55Z
dc.date.issued2012-10-01
dc.identifierMathematics of Computation. Providence: Amer Mathematical Soc, v. 81, n. 280, p. 2229-2249, 2012.
dc.identifier0025-5718
dc.identifierhttp://hdl.handle.net/11449/40946
dc.identifierWOS:000309315200013
dc.identifier3587123309745610
dc.description.abstractWe study polynomials which satisfy the same recurrence relation as the Szego polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego polynomials and polynomials arising from canonical spectral transformations are obtained.
dc.languageeng
dc.publisherAmer Mathematical Soc
dc.relationMathematics of Computation
dc.relation1.750
dc.relation1,939
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSzegö polynomials
dc.subjectPara-orthogonal polynomials
dc.subjectreflection coefficients
dc.subjectcanonical spectral transformations
dc.titleSZEGO and PARA-ORTHOGONAL POLYNOMIALS on THE REAL LINE: ZEROS and CANONICAL SPECTRAL TRANSFORMATIONS
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución