dc.contributorUniversidade Federal de São João del-Rei (UFSJ)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:31:26Z
dc.date.available2014-05-20T15:31:26Z
dc.date.created2014-05-20T15:31:26Z
dc.date.issued2011-01-01
dc.identifierApplied Mathematics & Information Sciences. Kalamazoo: Natural Sciences Publishing Corporation, v. 5, n. 1, p. 17-28, 2011.
dc.identifier1935-0090
dc.identifierhttp://hdl.handle.net/11449/40566
dc.identifierWOS:000297434000002
dc.description.abstractIn this work we consider a transmission problem for the longitudinal displacement of a Euler-Bernoulli beam, where one small part of the beam is made of a viscoelastic material with Kelvin-Voigt constitutive relation. We use semigroup theory to prove existence and uniqueness of solutions. We apply a general results due to L. Gearhart [5] and J. Pruss [10] in the study of asymptotic behavior of solutions and prove that the semigroup associated to the system is exponentially stable. A numerical scheme is presented,
dc.languageeng
dc.publisherNatural Sciences Publishing Corporation
dc.relationApplied Mathematics & Information Sciences
dc.relation0,220
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectTransmission problem
dc.subjectExponencial stability
dc.subjectEuler-Bernoulli beam
dc.subjectKelvin-Voigt damping
dc.subjectSemigroup
dc.subjectNumerical scheme
dc.titleA Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución