dc.contributorWashington State Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:29:56Z
dc.date.available2014-05-20T15:29:56Z
dc.date.created2014-05-20T15:29:56Z
dc.date.issued2007-01-01
dc.identifierFood Research International. Amsterdam: Elsevier B.V., v. 40, n. 4, p. 510-519, 2007.
dc.identifier0963-9969
dc.identifierhttp://hdl.handle.net/11449/39397
dc.identifier10.1016/j.foodres.2007.01.001
dc.identifierWOS:000245789400009
dc.identifier8710975442052503
dc.description.abstractThe effect of milk processing on the microstructure of probiotic low-fat yogurt was studied. Skim milk fortified with skim milk powder was subjected to three treatments prior to innoculation: thermal treatment at 85 degrees C for 30 min, high hydrostatic pressure at 676 MPa for 5 min, and combined treatments of high hydrostatic pressure (HHP) and heat. The processed milk was then fermented by using two different starter cultures containing Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacterium longum. The microstructure of heat-treated milk yogurt had fewer interconnected chains of irregularly shaped casein micelles, forming a network that enclosed the void spaces. on the other hand, microstructure of HHP yogurt had more interconnected clusters of densely aggregated protein of reduced particle size, with an appearance more spherical in shape, exhibiting a smoother more regular surface and presenting more uniform size distribution. The combined HHP and heat milk treatments led to compact yogurt gels with increasingly larger casein micelle clusters interspaced by void spaces, and exhibited a high degree of cross-linking. The rounded micelles tended to fuse and form small irregular aggregates in association with clumps of dense amorphous material, which resulted in improved gel texture and viscosity. (C) 2007 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationFood Research International
dc.relation3.520
dc.relation1,472
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjecthigh hydrostatic pressure
dc.subjectyogurt
dc.subjectprobiotics
dc.subjectmicrostructure
dc.titleHigh hydrostatic pressure processing on microstructure of probiotic low-fat yogurt
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución