dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:28:31Z
dc.date.available2014-05-20T15:28:31Z
dc.date.created2014-05-20T15:28:31Z
dc.date.issued1999-03-01
dc.identifierPhysica A. Amsterdam: Elsevier B.V., v. 264, n. 3-4, p. 473-491, 1999.
dc.identifier0378-4371
dc.identifierhttp://hdl.handle.net/11449/38317
dc.identifier10.1016/S0378-4371(98)00457-9
dc.identifierWOS:000078932500010
dc.identifier2-s2.0-0033099567
dc.description.abstractThe von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationPhysica A
dc.relation2.132
dc.relation0,773
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectdiscrete phase spaces
dc.subjectWigner functions
dc.subjectLiouville dynamics
dc.subjecttime interval operator
dc.titleDynamics in discrete phase spaces and time interval operators
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución