dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:25:56Z
dc.date.available2014-05-20T15:25:56Z
dc.date.created2014-05-20T15:25:56Z
dc.date.issued2006-01-01
dc.identifierModern Practice In Stress and Vibration Analysis Vi, Proceedings. Stafa-zurich: Trans Tech Publications Ltd, v. 5-6, p. 47-54, 2006.
dc.identifier1660-9336
dc.identifierhttp://hdl.handle.net/11449/36249
dc.identifier10.4028/www.scientific.net/AMM.5-6.47
dc.identifierWOS:000241423300006
dc.description.abstractThe Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
dc.languageeng
dc.publisherTrans Tech Publications Ltd
dc.relationModern Practice In Stress and Vibration Analysis Vi, Proceedings
dc.relation0,117
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectaction potential
dc.subjectnon-linear dynamics
dc.subjectFitzhugh-Nagumo model
dc.subjectL-F transformation
dc.titleOn non-linear dynamics and a periodic control design applied to the potential of membrane action
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución