dc.contributorUniversidade Estadual de Mato Grosso do Sul (UEMS)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:24:43Z
dc.date.available2014-05-20T15:24:43Z
dc.date.created2014-05-20T15:24:43Z
dc.date.issued2007-03-15
dc.identifierJournal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 200, n. 2, p. 576-590, 2007.
dc.identifier0377-0427
dc.identifierhttp://hdl.handle.net/11449/35282
dc.identifier10.1016/j.cam.2006.01.013
dc.identifierWOS:000244279500010
dc.identifierWOS000244279500010.pdf
dc.identifier3587123309745610
dc.description.abstractWe improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341-348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355-370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole. (c) 2006 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal of Computational and Applied Mathematics
dc.relation1.632
dc.relation0,938
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectinterpolation
dc.subjectrational interpolants
dc.subjectdenominator values
dc.subjectbarycentric weights
dc.titleOn the denominator values and barycentric weights of rational interpolants
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución