dc.contributor | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:23:28Z | |
dc.date.available | 2014-05-20T15:23:28Z | |
dc.date.created | 2014-05-20T15:23:28Z | |
dc.date.issued | 2004-01-01 | |
dc.identifier | Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004. | |
dc.identifier | 0101-8205 | |
dc.identifier | http://hdl.handle.net/11449/34247 | |
dc.identifier | S1807-03022004000100005 | |
dc.identifier | WOS:000208135000005 | |
dc.identifier | WOS000208135000005.pdf | |
dc.identifier | 3638688119433520 | |
dc.description.abstract | We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. | |
dc.language | eng | |
dc.publisher | Soc Brasileira Matematica Aplicada & Computacional | |
dc.relation | Computational & Applied Mathematics | |
dc.relation | 0.863 | |
dc.relation | 0,272 | |
dc.rights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Linear Quadratic problems | |
dc.subject | Continuous time optimization | |
dc.subject | discrete approximation | |
dc.subject | strict convexity | |
dc.title | Discrete approximations for strict convex continuous time problems and duality | |
dc.type | Artículos de revistas | |