dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:23:28Z
dc.date.available2014-05-20T15:23:28Z
dc.date.created2014-05-20T15:23:28Z
dc.date.issued2004-01-01
dc.identifierComputational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004.
dc.identifier0101-8205
dc.identifierhttp://hdl.handle.net/11449/34247
dc.identifierS1807-03022004000100005
dc.identifierWOS:000208135000005
dc.identifierWOS000208135000005.pdf
dc.identifier3638688119433520
dc.description.abstractWe propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.
dc.languageeng
dc.publisherSoc Brasileira Matematica Aplicada & Computacional
dc.relationComputational & Applied Mathematics
dc.relation0.863
dc.relation0,272
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectLinear Quadratic problems
dc.subjectContinuous time optimization
dc.subjectdiscrete approximation
dc.subjectstrict convexity
dc.titleDiscrete approximations for strict convex continuous time problems and duality
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución