dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:21:05Z
dc.date.available2014-05-20T15:21:05Z
dc.date.created2014-05-20T15:21:05Z
dc.date.issued2007-01-01
dc.identifierReal and Complex Singularities. Cambridge: Birkhauser Boston, p. 127-141, 2007.
dc.identifierhttp://hdl.handle.net/11449/32265
dc.identifier10.1007/978-3-7643-7776-2_10
dc.identifierWOS:000243343400010
dc.description.abstractM. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].
dc.languageeng
dc.publisherBirkhauser Boston
dc.relationReal and Complex Singularities
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectpath formulation
dc.subjectequivariant bifurcation problems
dc.subjectZ(2) circle plus Z(2)-symmetry
dc.subjectclassification
dc.titlePath formulation for Z(2) circle plus Z(2)-equivariant bifurcation problems
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución