dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:18:42Z
dc.date.available2014-05-20T14:18:42Z
dc.date.created2014-05-20T14:18:42Z
dc.date.issued2012-08-01
dc.identifierJournal of Sol-gel Science and Technology. Dordrecht: Springer, v. 63, n. 2, p. 266-274, 2012.
dc.identifier0928-0707
dc.identifierhttp://hdl.handle.net/11449/25648
dc.identifier10.1007/s10971-011-2672-8
dc.identifierWOS:000306846700011
dc.identifier6466841023506131
dc.identifier9971202585286967
dc.identifier5584298681870865
dc.identifier0000-0002-3823-0050
dc.identifier0000-0002-8356-8093
dc.description.abstractSiloxane-polymethyl methacrylate hybrid films were deposited on carbon steel substrates by dip-coating from a sol prepared by acid-catalyzed hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyl-trimethoxysilane (MPTS), followed by radical polymerization of methyl methacrylate (MMA). Structural properties of the hybrids were studied using Si-29 and C-13 nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), as a function of the MMA/MPTS ratio, which ranged between 2 and 10. The efficiency of corrosion protection of hybrid-coated carbon steel was investigated by XPS, potentiodynamic polarization curves and electrochemical impedance spectroscopy after immersion of the material in acidic and neutral saline aqueous solution. The NMR and TGA results indicate a high degree of polycondensation (84%) and elevated thermal stability of 410 A degrees C for the hybrid film with a MMA/MPTS ratio of 8, exhibiting also and excellent adhesion to the substrate. The XPS analysis confirmed the variation of the MMA phase in the hybrid, and showed that no corrosion-induced changes had occurred after 18 days immersion of the coated steel in 3.5% NaCl solution. Potentiodynamic polarization curves have shown that the hybrid coating prepared using a TEOS/MPTS ratio of 8 yielded the best anti-corrosion performance. It acts as a very efficient corrosion barrier, increasing the total impedance by almost 6 orders of magnitude and reducing the current densities by 4 orders of magnitude, compared to the bare electrode. The obtained results are discussed based on the correlation of structural information with impedance data presented for both electrolytes in the form of electrical equivalent circuits.
dc.languageeng
dc.publisherSpringer
dc.relationJournal of Sol-Gel Science and Technology
dc.relation1.745
dc.relation0,477
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectHybrid coatings
dc.subjectCorrosion protection
dc.subjectBonding structure
dc.subjectCarbon Steel
dc.subjectElectrochemical characterization
dc.titleHighly corrosion resistant siloxane-polymethyl methacrylate hybrid coatings
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución