dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniv Complutense Madrid
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T18:51:20Z
dc.date.accessioned2014-05-20T14:17:08Z
dc.date.available2013-09-30T18:51:20Z
dc.date.available2014-05-20T14:17:08Z
dc.date.created2013-09-30T18:51:20Z
dc.date.created2014-05-20T14:17:08Z
dc.date.issued2011-10-01
dc.identifierNonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 74, n. 15, p. 5111-5132, 2011.
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11449/25134
dc.identifier10.1016/j.na.2011.05.006
dc.identifierWOS:000291471000020
dc.description.abstractIn this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relation1.291
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectThin domains
dc.subjectDissipative parabolic equations
dc.subjectGlobal attractors
dc.subjectUpper semicontinuity
dc.subjectLower semicontinuity
dc.subjectHomogenization
dc.titleSemilinear parabolic problems in thin domains with a highly oscillatory boundary
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución