dc.contributorUniv Lisbon
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Minho
dc.date.accessioned2013-09-30T18:51:18Z
dc.date.accessioned2014-05-20T14:17:06Z
dc.date.available2013-09-30T18:51:18Z
dc.date.available2014-05-20T14:17:06Z
dc.date.created2013-09-30T18:51:18Z
dc.date.created2014-05-20T14:17:06Z
dc.date.issued2012-12-01
dc.identifierNonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 75, n. 18, p. 6570-6587, 2012.
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11449/25127
dc.identifier10.1016/j.na.2012.07.030
dc.identifierWOS:000309691700018
dc.description.abstractFor a family of differential equations with infinitive delay and impulses, we establish conditions for the existence of global solutions and for the global asymptotic and global exponential stabilities of an equilibrium point. The results are used to give stability criteria for a very broad family of impulsive neural network models with both unbounded distributed delays and bounded time-varying discrete delays. Most of the impulsive neural network models with delay recently studied are included in the general framework presented here. (C) 2012 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relationNonlinear Analysis-theory Methods & Applications
dc.relation1.291
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectInfinite delay
dc.subjectImpulses Existence of solutions
dc.subjectCohen-Grossberg neural network
dc.subjectGlobal asymptotic stability
dc.subjectGlobal exponential stability
dc.titleStability results for impulsive functional differential equations with infinite delay
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución