dc.contributorUniversidade Federal de São João del-Rei (UFSJ)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorAbdus Salam Int Ctr Theoret Phys
dc.date.accessioned2013-09-30T18:51:03Z
dc.date.accessioned2014-05-20T14:16:44Z
dc.date.available2013-09-30T18:51:03Z
dc.date.available2014-05-20T14:16:44Z
dc.date.created2013-09-30T18:51:03Z
dc.date.created2014-05-20T14:16:44Z
dc.date.issued2012-12-01
dc.identifierChaos. Melville: Amer Inst Physics, v. 22, n. 4, p. 9, 2012.
dc.identifier1054-1500
dc.identifierhttp://hdl.handle.net/11449/25030
dc.identifier10.1063/1.4772997
dc.identifierWOS:000312831600048
dc.identifierWOS000312831600048.pdf
dc.identifier6130644232718610
dc.identifier0000-0001-8224-3329
dc.description.abstractSome dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]
dc.languageeng
dc.publisherAmerican Institute of Physics (AIP)
dc.relationChaos
dc.relation2.415
dc.relation0,716
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleScaling investigation for the dynamics of charged particles in an electric field accelerator
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución