dc.contributorUniv Maribor
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T18:50:22Z
dc.date.accessioned2014-05-20T14:16:16Z
dc.date.available2013-09-30T18:50:22Z
dc.date.available2014-05-20T14:16:16Z
dc.date.created2013-09-30T18:50:22Z
dc.date.created2014-05-20T14:16:16Z
dc.date.issued2012-01-16
dc.identifierPhysics Letters A. Amsterdam: Elsevier B.V., v. 376, n. 5, p. 723-728, 2012.
dc.identifier0375-9601
dc.identifierhttp://hdl.handle.net/11449/24892
dc.identifier10.1016/j.physleta.2011.12.031
dc.identifierWOS:000301036000012
dc.identifier6130644232718610
dc.identifier0000-0001-8224-3329
dc.description.abstractA new universal empirical function that depends on a single critical exponent (acceleration exponent) is proposed to describe the scaling behavior in a dissipative kicked rotator. The scaling formalism is used to describe two regimes of dissipation: (i) strong dissipation and (ii) weak dissipation. For case (i) the model exhibits a route to chaos known as period doubling and the Feigenbaum constant along the bifurcations is obtained. When weak dissipation is considered the average action as well as its standard deviation are described using scaling arguments with critical exponents. The universal empirical function describes remarkably well a phase transition from limited to unlimited growth of the average action. (C) 2012 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationPhysics Letters A
dc.relation1.863
dc.relation0,595
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectScaling
dc.subjectStandard map
dc.subjectDissipation
dc.titleStatistical properties of a dissipative kicked system: Critical exponents and scaling invariance
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución