dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Utrecht
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2013-09-30T19:02:14Z
dc.date.accessioned2014-05-20T14:13:44Z
dc.date.available2013-09-30T19:02:14Z
dc.date.available2014-05-20T14:13:44Z
dc.date.created2013-09-30T19:02:14Z
dc.date.created2014-05-20T14:13:44Z
dc.date.issued2012-07-26
dc.identifierPhysical Review B. College Pk: Amer Physical Soc, v. 86, n. 3, p. 17, 2012.
dc.identifier1098-0121
dc.identifierhttp://hdl.handle.net/11449/24652
dc.identifier10.1103/PhysRevB.86.035326
dc.identifierWOS:000306924000003
dc.identifierWOS000306924000003.pdf
dc.description.abstractWe study the bilayer quantum Hall system at total filling factor nu(T) = 1 within a bosonization formalism which allows us to approximately treat the magnetic exciton as a boson. We show that in the region where the distance between the two layers is comparable to the magnetic length, the ground state of the system can be seen as a finite-momentum condensate of magnetic excitons provided that the excitation spectrum is gapped. We analyze the stability of such a phase within the Bogoliubov approximation first assuming that only one momentum Q is macroscopically occupied and later we consider the same situation for two modes +/- Q. We find strong evidences that a first-order quantum phase transition at small interlayer separation takes place from a zero-momentum condensate phase, which corresponds to Halperin 111 state, to a finite-momentum condensate of magnetic excitons.
dc.languageeng
dc.publisherAmer Physical Soc
dc.relationPhysical Review B
dc.relation1,604
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleFinite-momentum condensate of magnetic excitons in a bilayer quantum Hall system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución