dc.contributorUniversity of Arizona
dc.contributorUniv Groningen
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2013-09-30T18:53:41Z
dc.date.accessioned2014-05-20T14:09:32Z
dc.date.available2013-09-30T18:53:41Z
dc.date.available2014-05-20T14:09:32Z
dc.date.created2013-09-30T18:53:41Z
dc.date.created2014-05-20T14:09:32Z
dc.date.issued2008-06-01
dc.identifierAnnals of Physics. San Diego: Academic Press Inc. Elsevier B.V., v. 323, n. 6, p. 1304-1323, 2008.
dc.identifier0003-4916
dc.identifierhttp://hdl.handle.net/11449/24186
dc.identifier10.1016/j.aop.2008.01.003
dc.identifierWOS:000256634800002
dc.description.abstractWe use a toy model to illustrate how to build effective theories for singular potentials. We consider a central attractive 1/r(2) potential perturbed by a 1/r(4) correction. The power-counting rule, an important ingredient of effective theory, is established by seeking the minimum set of short-range counterterms that renormalize the scattering amplitude. We show that leading-order counterterms are needed in all partial waves where the potential overcomes the centrifugal barrier, and that the additional counterterms at next-to-leading order are the ones expected on the basis of dimensional analysis. (C) 2008 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc. Elsevier B.V.
dc.relationAnnals of Physics
dc.relation2.367
dc.relation0,987
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectrenormalization
dc.subjectsingular potentials
dc.subjecteffective field theory
dc.subjectpower counting rule
dc.titleRenormalization of singular potentials and power counting
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución