dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:07:13Z
dc.date.available2014-05-20T14:07:13Z
dc.date.created2014-05-20T14:07:13Z
dc.date.issued2007-01-01
dc.identifierSiam Journal on Applied Mathematics. Philadelphia: Siam Publications, v. 67, n. 3, p. 619-629, 2007.
dc.identifier0036-1399
dc.identifierhttp://hdl.handle.net/11449/23599
dc.identifier10.1137/050644835
dc.identifierWOS:000246299200002
dc.identifierWOS000246299200002.pdf
dc.description.abstractWe study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.
dc.languageeng
dc.publisherSiam Publications
dc.relationSiam Journal on Applied Mathematics
dc.relation1.698
dc.relation1,108
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectfree surface evolution
dc.subjectflow in porous media
dc.subjectmathematical modeling
dc.subjectconformal transformation
dc.subjectDirichlet-to-Neumann
dc.subjectgroundwater flow
dc.titleAn exact equation for the free surface of a fluid in a porous medium
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución