dc.contributorFac Engn Ind
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:07:04Z
dc.date.available2014-05-20T14:07:04Z
dc.date.created2014-05-20T14:07:04Z
dc.date.issued2006-05-15
dc.identifierApplied Mathematics and Computation. New York: Elsevier B.V., v. 176, n. 2, p. 654-661, 2006.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/23559
dc.identifier10.1016/j.amc.2005.10.010
dc.identifierWOS:000238658100025
dc.description.abstractWe study the existence of homoclic solutions for reversible Hamiltonian systems taking the family of differential equations u(iv) + au - u +f(u, b) = 0 as a model, where fis an analytic function and a, b real parameters. These equations are important in several physical situations such as solitons and in the existence of finite energy stationary states of partial differential equations, but no assumptions of any kind of discrete symmetry is made and the analysis here developed can be extended to others Hamiltonian systems and successfully employed in situations where standard methods fail. We reduce the problem of computing these orbits to that of finding the intersection of the unstable manifold with a suitable set and then apply it to concrete situations. We also plot the homoclinic values configuration in parameters space, giving a picture of the structural distribution and a geometrical view of homoclinic bifurcations. (c) 2005 Published by Elsevier B.V.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Mathematics and Computation
dc.relation2.300
dc.relation1,065
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjecthomoclinic bifurcation
dc.subjectHamiltonian systems
dc.subjectreversibility
dc.titleHomoclinic bifurcations in reversible Hamiltonian systems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución