dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorPontifícia Universidade Católica de São Paulo (PUC-SP)
dc.date.accessioned2014-05-20T14:05:40Z
dc.date.available2014-05-20T14:05:40Z
dc.date.created2014-05-20T14:05:40Z
dc.date.issued2004-03-19
dc.identifierJournal of Physics A-mathematical and General. Bristol: Iop Publishing Ltd, v. 37, n. 11, p. 3687-3698, 2004.
dc.identifier0305-4470
dc.identifierhttp://hdl.handle.net/11449/23050
dc.identifier10.1088/0305-4470/37/11/010
dc.identifierWOS:000220636400011
dc.description.abstractThe mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit h --> 0 for fixed potential parameters.
dc.languageeng
dc.publisherIop Publishing Ltd
dc.relationJournal of Physics A: Mathematical and General
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleMapping the Wigner distribution function of the Morse oscillator onto a semiclassical distribution function
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución