dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:02:52Z
dc.date.available2014-05-20T14:02:52Z
dc.date.created2014-05-20T14:02:52Z
dc.date.issued2012-07-01
dc.identifierNonlinear Dynamics. Dordrecht: Springer, v. 69, n. 1-2, p. 577-587, 2012.
dc.identifier0924-090X
dc.identifierhttp://hdl.handle.net/11449/22150
dc.identifier10.1007/s11071-011-0288-8
dc.identifierWOS:000304651400045
dc.identifier3757225669056317
dc.identifier3724937886557424
dc.identifier0000-0001-6790-1055
dc.description.abstractWe present some global dynamical aspects of Shimizu-Morioka equations given by(x)Over dot = y, (y)Over dot = x - lambda y - xz, (z)Over dot = -alpha z + x(2),where (x,y,z)aae(3) are the state variables and lambda,alpha are real parameters. This system is a simplified model proposed for studying the dynamics of the well-known Lorenz system for large Rayleigh numbers. Using the Poincar, compactification of a polynomial vector field in ae(3), we give a complete description of the dynamics of Shimizu-Morioka equations at infinity. Then using analytical and numerical tools, we investigate for the case alpha=0 the existence of infinitely many singularly degenerate heteroclinic cycles, each one consisting of an invariant set formed by a line of equilibria together with a heteroclinic orbit connecting two of these equilibria. The dynamical consequences of the existence of these cycles are also investigated. The present study is part of an effort aiming to describe global properties of quadratic three-dimensional vector fields with chaotic dynamical behavior, as made for instance in (Dias et al. in Nonlinear Anal. Real World Appl. 11(5):3491-3500, 2010; Kokubu and Roussarie in J. Dyn. Differ. Equ. 16(2):513-557, 2004; Llibre and Messias in Physica D 238(3):241-252, 2009; Llibre et al. in J. Phys. A, Math. Theor. 41:275210, 2008; Llibre et al. in Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(10):3137-3155, 2010; Lorenz in J. Atmos. Sci. 20:130-141, 1963; Lu et al. in Int. J. Bifurc. Chaos Appl. Sci. Eng. 14(5):1507-1537, 2004; Mello et al. in Chaos Solitons Fractals 37:1244-1255, 2008; Messias in J. Phys. A, Math. Theor. 42:115101, 2009; Messias et al. in TEMA Tend. Mat. Apl. Comput. 9(2):275-285, 2008).
dc.languageeng
dc.publisherSpringer
dc.relationNonlinear Dynamics
dc.relation4.339
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectShimizu-Morioka equations
dc.subjectPoincare compactification
dc.subjectDynamics at infinity
dc.subjectSingularly degenerate heteroclinic cycles
dc.subjectChaotic dynamics
dc.titleDynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución