dc.contributorQuaid I Azam Univ
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:02:50Z
dc.date.available2014-05-20T14:02:50Z
dc.date.created2014-05-20T14:02:50Z
dc.date.issued2012-08-01
dc.identifierJournal of Algebra and Its Applications. Singapore: World Scientific Publ Co Pte Ltd, v. 11, n. 4, p. 19, 2012.
dc.identifier0219-4988
dc.identifierhttp://hdl.handle.net/11449/22138
dc.identifier10.1142/S0219498812500788
dc.identifierWOS:000307044900016
dc.identifier8940498347481982
dc.description.abstractIt is very well known that algebraic structures have valuable applications in the theory of error-correcting codes. Blake [Codes over certain rings, Inform. and Control 20 (1972) 396-404] has constructed cyclic codes over Z(m) and in [Codes over integer residue rings, Inform. and Control 29 (1975), 295-300] derived parity check-matrices for these codes. In [Linear codes over finite rings, Tend. Math. Appl. Comput. 6(2) (2005) 207-217]. Andrade and Palazzo present a construction technique of cyclic, BCH, alternant, Goppa and Srivastava codes over a local finite ring B. However, in [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)] and encoding, Comput. Math. Appl. 62 (2011) 1645-1654], Shah et al. extend this technique of constructing linear codes over a finite local ring B via monoid rings B[X; 1/p(k) Z(0)], where p = 2 and k = 1, 2, respectively, instead of the polynomial ring B[X]. In this paper, we construct these codes through the monoid ring B[X; 1/kp Z(0)], where p = 2 and k = 1, 2, 3. Moreover, we also strengthen and generalize the results of [Encoding through generalized polynomial codes, Comput. Appl. Math. 30(2) (2011) 1-18] and [Constructions of codes through semigroup ring B[X; 1/2(2) Z(0)]] and [Encoding, Comput. Math. Appl. 62 (2011) 1645-1654] to the case of k = 3.
dc.languageeng
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relationJournal of Algebra and Its Applications
dc.relation0.600
dc.relation0,690
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSemigroup ring
dc.subjectCyclic code
dc.subjectBCH code
dc.subjectAlternant code
dc.subjectGoppa code
dc.subjectSrivastava code
dc.titleCYCLIC CODES THROUGH B[X], B[X; 1/kp Z(0)] and B[X; 1/p(k) Z(0)]: A COMPARISON
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución