dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Almeria
dc.date.accessioned2014-05-20T14:01:50Z
dc.date.available2014-05-20T14:01:50Z
dc.date.created2014-05-20T14:01:50Z
dc.date.issued2010-12-15
dc.identifierJournal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 235, n. 4, p. 904-915, 2010.
dc.identifier0377-0427
dc.identifierhttp://hdl.handle.net/11449/21819
dc.identifier10.1016/j.cam.2010.05.028
dc.identifierWOS:000283902100004
dc.identifier8300322452622467
dc.identifier0000-0002-6823-4204
dc.description.abstractWe consider the Sobolev inner product< f.g > = integral(1)(-1) f(x)g(x)(1 - x(2))(alpha-1/2) dx + integral f'(x)g'(x)d psi(x), alpha > -1/2,where d(psi) is a measure involving a Gegenbauer weight and with mass points outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product. We obtain the asymptotics of the largest zeros of these polynomials via a Mehler-Heine type formula. These results are illustrated with some numerical experiments. (C) 2010 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationJournal of Computational and Applied Mathematics
dc.relation1.632
dc.relation0,938
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSobolev orthogonal polynomials
dc.subjectAsymptotic
dc.subjectMehler-Heine type formulas
dc.titleSome asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución