dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Univ Almeria | |
dc.date.accessioned | 2014-05-20T14:01:50Z | |
dc.date.available | 2014-05-20T14:01:50Z | |
dc.date.created | 2014-05-20T14:01:50Z | |
dc.date.issued | 2010-12-15 | |
dc.identifier | Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 235, n. 4, p. 904-915, 2010. | |
dc.identifier | 0377-0427 | |
dc.identifier | http://hdl.handle.net/11449/21819 | |
dc.identifier | 10.1016/j.cam.2010.05.028 | |
dc.identifier | WOS:000283902100004 | |
dc.identifier | 8300322452622467 | |
dc.identifier | 0000-0002-6823-4204 | |
dc.description.abstract | We consider the Sobolev inner product< f.g > = integral(1)(-1) f(x)g(x)(1 - x(2))(alpha-1/2) dx + integral f'(x)g'(x)d psi(x), alpha > -1/2,where d(psi) is a measure involving a Gegenbauer weight and with mass points outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product. We obtain the asymptotics of the largest zeros of these polynomials via a Mehler-Heine type formula. These results are illustrated with some numerical experiments. (C) 2010 Elsevier B.V. All rights reserved. | |
dc.language | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation | Journal of Computational and Applied Mathematics | |
dc.relation | 1.632 | |
dc.relation | 0,938 | |
dc.rights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Sobolev orthogonal polynomials | |
dc.subject | Asymptotic | |
dc.subject | Mehler-Heine type formulas | |
dc.title | Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights | |
dc.type | Artículos de revistas | |