dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:44Z
dc.date.available2014-05-20T14:01:44Z
dc.date.created2014-05-20T14:01:44Z
dc.date.issued2009-01-01
dc.identifierApplied Mathematics and Computation. New York: Elsevier B.V., v. 207, n. 1, p. 75-82, 2009.
dc.identifier0096-3003
dc.identifierhttp://hdl.handle.net/11449/21792
dc.identifier10.1016/j.amc.2007.10.065
dc.identifierWOS:000262613200006
dc.identifier5248388716505709
dc.identifier6542086226808067
dc.identifier0000-0002-0924-8024
dc.description.abstractOropharyngeal dysphagia is characterized by any alteration in swallowing dynamics which may lead to malnutrition and aspiration pneumonia. Early diagnosis is crucial for the prognosis of patients with dysphagia, and the best method for swallowing dynamics assessment is swallowing videofluoroscopy, an exam performed with X-rays. Because it exposes patients to radiation, videofluoroscopy should not be performed frequently nor should it be prolonged. This study presents a non-invasive method for the pre-diagnosis of dysphagia based on the analysis of the swallowing acoustics, where the discrete wavelet transform plays an important role to increase sensitivity and specificity in the identification of dysphagic patients. (C) 2008 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationApplied Mathematics and Computation
dc.relation2.300
dc.relation1,065
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSwallowing dynamics
dc.subjectDysphagia
dc.subjectDiscrete wavelet transform
dc.subjectPattern classification
dc.titleClassification of normal swallowing and oropharyngeal dysphagia using wavelet
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución