Artículos de revistas
Monotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomials
Fecha
2010-08-01Registro en:
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 368, n. 1, p. 80-89, 2010.
0022-247X
10.1016/j.jmaa.2010.02.038
WOS:000276926800008
1681267716971253
Autor
Universidade Estadual Paulista (Unesp)
Univ Carlos III
Universidade Estadual de Campinas (UNICAMP)
Institución
Resumen
Denote by x(n,k)(M,N)(alpha), k = 1, ..., n, the zeros of the Laguerre-Sobolev-type polynomials L(n)((alpha, M, N))(x) orthogonal with respect to the inner product< p, q > = 1/Gamma(alpha + 1) integral(infinity)(0)p(x)q(x)x(alpha)e(-x) dx + Mp(0)q(0) + Np'(0)q'(0),where alpha > -1, M >= 0 and N >= 0. We prove that x(n,k)(M,N)(alpha) interlace with the zeros of Laguerre orthogonal polynomials L(n)((alpha))(x) and establish monotonicity with respect to the parameters M and N of x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). Moreover, we find N(0) such that x(n,n)(M,N)(alpha) < 0 for all N > N(0), where x(n,n)(M,N)(alpha) is the smallest zero of L(n)((alpha, M, N))(x). Further, we present monotonicity and asymptotic relations of certain functions involving x(n,k)(M,0)(alpha) and x(n,k)(0,N)(alpha). (C) 2010 Elsevier B.V. All rights reserved.