dc.contributorUniv London Imperial Coll Sci Technol & Med
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:37Z
dc.date.available2014-05-20T14:01:37Z
dc.date.created2014-05-20T14:01:37Z
dc.date.issued1998-11-01
dc.identifierComputers & Mathematics With Applications. Oxford: Pergamon-Elsevier B.V., v. 36, n. 10-12, p. 59-69, 1998.
dc.identifier0898-1221
dc.identifierhttp://hdl.handle.net/11449/21747
dc.identifier10.1016/S0898-1221(98)80009-6
dc.identifierWOS:000077561600007
dc.identifierWOS000077561600007.pdf
dc.identifier0229111130706571
dc.description.abstractAn iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationComputers & Mathematics With Applications
dc.relation1.860
dc.relation1,058
dc.rightsAcesso aberto
dc.sourceWeb of Science
dc.subjectdeferred correction
dc.subjectLobatto formulae
dc.subjectsymmetry
dc.subjectTwo-point boundary value problems
dc.titleLobatto deferred correction for stiff two-point boundary value problems
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución