dc.contributorUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T14:01:30Z
dc.date.available2014-05-20T14:01:30Z
dc.date.created2014-05-20T14:01:30Z
dc.date.issued2001-01-01
dc.identifierNumerical Algorithms. Bussum: Baltzer Sci Publ Bv, v. 27, n. 1, p. 61-76, 2001.
dc.identifier1017-1398
dc.identifierhttp://hdl.handle.net/11449/21703
dc.identifier10.1023/A:1016797317080
dc.identifierWOS:000170557900003
dc.identifier8300322452622467
dc.identifier3587123309745610
dc.identifier0000-0002-6823-4204
dc.description.abstractIn this paper, we consider the symmetric Gaussian and L-Gaussian quadrature rules associated with twin periodic recurrence relations with possible variations in the initial coefficient. We show that the weights of the associated Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 4. We also show that the weights of the associated L-Gaussian quadrature rules can be given as rational functions in terms of the corresponding nodes where the numerators and denominators are polynomials of degree at most 5. Special cases of these quadrature rules are given. Finally, an easy to implement procedure for the evaluation of the nodes is described.
dc.languageeng
dc.publisherBaltzer Sci Publ Bv
dc.relationNumerical Algorithms
dc.relation1.536
dc.relation0,981
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectOrthogonal polynomials
dc.subjectGaussian quadrature rules
dc.subjectL-Gaussian quadrature rules
dc.titleGaussian quadrature rules with simple node-weight relations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución