dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.contributorUniversidade de São Paulo (USP)
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorNatl Res Inst Far Seas Fisheries
dc.date.accessioned2013-09-30T18:48:26Z
dc.date.accessioned2014-05-20T13:57:40Z
dc.date.available2013-09-30T18:48:26Z
dc.date.available2014-05-20T13:57:40Z
dc.date.created2013-09-30T18:48:26Z
dc.date.created2014-05-20T13:57:40Z
dc.date.issued2009-11-01
dc.identifierFisheries Research. Amsterdam: Elsevier B.V., v. 100, n. 3, p. 200-209, 2009.
dc.identifier0165-7836
dc.identifierhttp://hdl.handle.net/11449/20553
dc.identifier10.1016/j.fishres.2009.07.010
dc.identifierWOS:000271376900003
dc.description.abstractIn assessing a fish stock, indices based on catch per unit effort (CPUE) are frequently used. Estimates of three indices of catch per unit effort were compared here (CPUE(1), CPUE(2) and CPUE(3)), considering the fitting of two models: (i) a bivariate geostatistical model for catch and effort; (ii) a bivariate model where catch and effort were considered spatially independent. For comparing the estimates of the three indices after the fitting of the two models, catch and effort data were simulated in different scenarios. The simulation study showed that. in general, the estimates of CPUE(1) expressed by the ratio of the means of catch and effort, present better results for different scenarios and that the estimates from (i) are better than (ii), mainly when there is a correlation between catch and effort and an additional spatial correlation. (C) 2009 Elsevier B.V. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V.
dc.relationFisheries Research
dc.relation1.874
dc.relation0,941
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSimulation
dc.subjectGeostatistics
dc.subjectCPUE
dc.subjectEstimation
dc.subjectLinear coregionalization
dc.titleComparing three indices of catch per unit effort using Bayesian geostatistics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución