dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Montpellier 2
dc.date.accessioned2014-05-20T13:49:40Z
dc.date.available2014-05-20T13:49:40Z
dc.date.created2014-05-20T13:49:40Z
dc.date.issued2011-10-18
dc.identifierPhysical Review E. College Pk: Amer Physical Soc, v. 84, n. 4, p. 6, 2011.
dc.identifier1539-3755
dc.identifierhttp://hdl.handle.net/11449/17708
dc.identifier10.1103/PhysRevE.84.041126
dc.identifierWOS:000296525200004
dc.identifierWOS000296525200004.pdf
dc.identifier7977035910952141
dc.description.abstractDiffusion on a diluted hypercube has been proposed as a model for glassy relaxation and is an example of the more general class of stochastic processes on graphs. In this article we determine numerically through large-scale simulations the eigenvalue spectra for this stochastic process and calculate explicitly the time evolution for the autocorrelation function and for the return probability, all at criticality, with hypercube dimensions N up to N = 28. We show that at long times both relaxation functions can be described by stretched exponentials with exponent 1/3 and a characteristic relaxation time which grows exponentially with dimension N. The numerical eigenvalue spectra are consistent with analytic predictions for a generic sparse network model.
dc.languageeng
dc.publisherAmer Physical Soc
dc.relationPhysical Review E
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.titleStretched-exponential behavior and random walks on diluted hypercubic lattices
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución