dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorINESCPorto
dc.contributorUniv Porto
dc.date.accessioned2014-05-20T13:29:10Z
dc.date.available2014-05-20T13:29:10Z
dc.date.created2014-05-20T13:29:10Z
dc.date.issued2012-08-01
dc.identifierElectric Power Systems Research. Lausanne: Elsevier B.V. Sa, v. 89, p. 100-108, 2012.
dc.identifier0378-7796
dc.identifierhttp://hdl.handle.net/11449/9806
dc.identifier10.1016/j.epsr.2012.02.018
dc.identifierWOS:000304787300012
dc.description.abstractThis paper proposes a multi-objective approach to a distribution network planning process that deals with the challenges derived from the integration of Distributed Generation (DG). The proposal consists of a multi-objective version of the well-known Evolutionary Particle Swarm Optimization method (MEPSO). A broad performance comparison is made between the MEPSO and other multi-objective optimization meta-heuristics, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) and a Multi-objective Tabu Search (MOTS), using two distribution networks in a given DG penetration scenario. Although the three methods proved to be applicable in distribution system planning, the MEPSO algorithm has presented promising attributes and a constant and high level performance when compared to other methods. (C) 2012 Elsevier BM. All rights reserved.
dc.languageeng
dc.publisherElsevier B.V. Sa
dc.relationElectric Power Systems Research
dc.relation2.856
dc.relation1,048
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectDistributed generation planning
dc.subjectMulti-objective optimization
dc.subjectEvolutionary particle swarm optimization
dc.subjectGenetic Algorithm
dc.subjectTabu Search
dc.titleMulti-objective evolutionary particle swarm optimization in the assessment of the impact of distributed generation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución