Actas de congresos
Multinodal Load Forecasting in Power Electric Systems using a Neural Network with Radial Basis Function
Fecha
2011-01-01Registro en:
High Performance Structures and Materials Engineering, Pts 1 and 2. Stafa-zurich: Trans Tech Publications Ltd, v. 217-218, p. 39-44, 2011.
1022-6680
10.4028/www.scientific.net/AMR.217-218.39
WOS:000292278900008
7166279400544764
Autor
Universidade Estadual Paulista (Unesp)
Institución
Resumen
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.