dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-20T13:26:37Z
dc.date.available2014-05-20T13:26:37Z
dc.date.created2014-05-20T13:26:37Z
dc.date.issued2009-12-01
dc.identifierJournal of Mathematical Physics. Melville: Amer Inst Physics, v. 50, n. 12, p. 13, 2009.
dc.identifier0022-2488
dc.identifierhttp://hdl.handle.net/11449/8610
dc.identifier10.1063/1.3269587
dc.identifierWOS:000273223900043
dc.identifierWOS000273223900043.pdf
dc.identifier4894275157982649
dc.identifier0000-0001-7417-3308
dc.description.abstractThe fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered.
dc.languageeng
dc.publisherAmerican Institute of Physics (AIP)
dc.relationJournal of Mathematical Physics
dc.relation1.165
dc.relation0,644
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectdiffusion
dc.subjectharmonic oscillators
dc.subjectLaplace transforms
dc.titleOn anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución